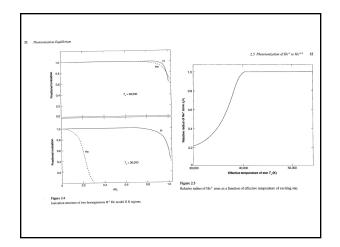
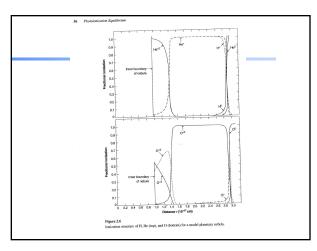
The ionization parameter

- U, the ratio of ionizing photon to hydrogen densities
- See <u>Davidson & Netzer</u> 1979

2.7 Photoionization of Heavy Elements


Finally, let us examine the ionization of the heavy elements, of which O, C, Ne, N, Si, and Fe, with abundances (by number) of order 10⁻³ to 10⁻⁴ that of H, are the most abundant. The ionization-equilibrium equation for any two successive stages of


$$n(X^{+i})\int_{v_i}^{\infty} \frac{4\pi J_v}{hv} a_v(X^{+i}) dv = n(X^{+i})\Gamma(X^{+i})$$
(2.30)

where $n(X^{+i})$ and $n(X^{+i+1})$ are the number densities of the two successive stages of incinations $n(X^{+i})$ in the physical instances are continuous from the account level of X^{i}

U and T(star) determine ionization

 No matter how intense the radiation field, how large the U, ions with ionization potentials higher than the highest energy in the SED cannot be produced

