Molecular hydrogen in star forming regions

Gargi Shaw

UM-DAE Centre for excellence in basic sciences University of Mumbai

OUTLINE

Hydrogen Molecule & Cloudy

- Energy diagram of H₂
- Formation of H₂
- Destruction of H₂
- Ortho-Para conversion

Our results on high redshift Damped Lya absorbers (DLAs)

Hydrogen MoleculeWhy is it so important ?

- About 90% of the current Baryonic matter is in the form of Hydrogen.
- > Molecular hydrogen plays an important role in astrophysics.
 - It is the first and the most abundant neutral molecule to be formed in the Universe.
 - As a highly efficient coolant, it increases the rate of formation of galaxies in primordial gas
 - Molecular hydrogen is a major constituent of giant molecular clouds.

Hydrogen Molecule

Hydrogen molecule (H₂) is the simplest neutral molecule consisting of two protons and two electrons.

Fermi statistics

Total (nuclear × electronic) wave function must be anti-symmetric under the exchange of nuclei

- Ortho states : Total spin I =1, Degeneracy : 3 × (2J+1) Nuclear spin wave function : symmetric Spatial wave function : anti-symmetric
- Para states : Total spin I=0, Degeneracy : 2J+1 Nuclear spin wave function : anti-symmetric Spatial wave function : symmetric

Ground state

Even J: Para state

Odd J : Ortho state

Hydrogen Molecule

- Hydrogen molecule (H₂) is the simplest neutral molecule consisting of two protons and two electrons.
- It is a symmetric molecule and does not have a permanent electric dipole moment.

In ground state rovibrational transitions can occur only via quadrupole transitions with $\Delta J=0, \pm 2$.

UM-DAE CBS

Potential curves involved in the Lyman and Werner bands (Roueff 00)

Energy levels of H₂

"Atom H2"

Branch Notation

Branch J_{up} - J_{lo} O..... -2 P-1 Q..... 0 R.....+1 S+2

Spectroscopic notation

- H2 17.03m 0-0 S(1)
- H2 12.28m 0-0 S(2)
- H2 9.665m 0-0 S(3)
- H2 8.025m 0-0 S(4)
- H2 6.909m 0-0 S(5)
- H2 2.12099m 1-0 S(1)
- H2 2.22269m 1-0 S(0)
- H2 2.41307m 1-0 Q(2)
- H2 2.42307m 1-0 Q(3)
- H2 2.43683m 1-0 Q(4

Micro-physics of H₂

Formation of H ₂	Destruction of H ₂
• Catalysis on the grain surface $H + H + grain \rightarrow H_2 + grain$	 Solomon process
	 Direct photo-dissociation
 Radiative association processes 	
$i. H^{-} + H \rightarrow H_2 + e^{-}$	 Collisional dissociation
$ii. H_2^+ + H \rightarrow H_2 + H^+$	

DESTRUCTION OF H₂

Collisional dissociation

Collisional dissociation by H, He, H₂ and e⁻ are also possible from higher vib-rotational state

Pumping via X-ray electrons

Molecular hydrogen is excited to $B^{1}\Sigma u^{+}$ or $C^{1}\Pi_{u}^{\pm}$ state by secondary electrons.

Excitation to the triplet b state

Molecular hydrogen is excited to triplet **b** state by energetic secondary electrons and is dissociated

Cosmic ray ionization

 H_2 + CR \rightarrow H_2^+ + e^-

Rate coefficient fits for collisional de-excitation processes: Le Bourlot et al. (1999; <u>http://ccp7.dur.ac.uk</u>)

Nonreactive transitions

 $\begin{array}{rcl} \mathrm{H}_{2}(v,J) + \mathrm{H} & \longrightarrow & \mathrm{H}_{2}(v,J) + \mathrm{H} \\ \mathrm{H}_{2}(v,J) + \mathrm{He} & \longrightarrow & \mathrm{H}_{2}(v,J) + \mathrm{He} \\ \mathrm{H}_{2}(v,J) + \mathrm{H}_{2} & \longrightarrow & \mathrm{H}_{2}(v,J) + \mathrm{H}_{2} \end{array}$

Gerlich 1990 $H_2(v, J) + H^+ \rightarrow H_2(\dot{v}, \dot{J}) + H^+$

Shaw et.al 2005

- No Radiative decay
- Exchange collisions between H₂ and H, H⁺ and H₃⁺
 - > $\mathbf{H}_2(v, J) + \mathbf{H} \rightarrow \mathbf{H}_2(v, J) + \mathbf{H}$ (Sun & Dalgarno 1994)
 - > $H_2(v, J) + H^+ \rightarrow H_2(\dot{v}, \dot{J}) + H^+$ (Gerlich 1990)
- > H₂(v, J) + H₃⁺ → H₂(v, J) + H₃⁺ (Same as H⁺)
 > On grain surfaces (below critical temperature)

Some important reactions

 H_2 helps to form other molecules in PDRs.

$$\begin{array}{l} H_2^{\, \bigstar} \, + \, O \, \rightarrow \, OH \, + \, H \\ OH \, + \, C^+ \, \rightarrow \, CO^+ \, + \, O \\ CO^+ \, + \, H \, \rightarrow \, CO \, + \, H^+ \\ H_2^{\, \bigstar} \, + \, C^+ \, \rightarrow CH^+ \end{array}$$

FUV and formation pumping of Molecular Hydrogen

 H_2 has small moment of inertia. \rightarrow FUV pumping can excite higher levels. H_2 energy levels are widely spaced.

➤Formation pumping

H₂ formation on dust grain surfaces is exothermic process and can excite higher levels.

Shaw et al. 2005

Damped Lyα Absorbers (DLAs)

DLAs are defined as absorption-line systems having large neutral hydrogen column density N(HI)≥2×10²⁰cm⁻² when seen against the emission of background QSOs.

Damped Lyα Absorbers (DLAs)

- DLAs are believed to be the progenitors of present day disk galaxies.
- Study of DLAs at high redshift provides information about :
 - early evolution of galaxies,
 - intergalactic medium,
 - early star formation,
 - evolution of chemical elements.

UVES Observations at VLT

 \succ DLA at z_{abs} = 2.3377 observed in absorption along the sightline towards the quasars LBQS 1232+0815 \blacktriangleright DLA at z_{abs} = 2.41837 observed in absorption along the sightline SDSS J143912.04+111740.5 H, has been detected in both DLAs, and CO has also

been observed in the DLA at $z_{abs} = 2.41837$.

We perform our simulation using the spectral synthesis code CLOUDY.

Model assumptions

- > A plane parallel slab of gas irradiated from both sides.
- > We included,
- Haardt-Mada metagalactic radiation of background galaxies and QSOs
- CMB
- cosmic ray ionization
- radiation from in-situ star formation.

Results for DLA at z = 2.3 towards LBQS

<u>1232+0815</u>

Model parameter	Value
Hydrogen density	100 cm ⁻³
Intensity of radiation field	2.5×10^{-3} erg cm ⁻² s ⁻¹ (between 6 and 13.6 eV)
Cosmic ray ionisation rate of H I	2 × 10 ⁻¹⁶ s ⁻¹
Metallicity	0.3 ISM
Turbulence	4 km/s
Grain size	0.5 ISM

Ivanchik et al. 2010; Balashev et al. 2011

Species	Column density from	Column density	
(X)	observation	predicted by model	
	log N(X) cm ⁻²	log N(X) cm ⁻²	
HI	20.90±0.08ª	20.84	
H ₂	19.68 ^{+0.08} -0.10 ^a	19.70	
H ₂ (0, 0)	19.45±0.10 ^a	19.43	
H ₂ (0, 1)	19.29±0.15 ^a	19.37	
H ₂ (0, 2)	16.78±0.24 ^a	16.99	
H ₂ (0, 3)	16.36±0.10 ^a	15.70	
H ₂ (0, 4)	14.70±0.06 ^a	14.63	
H ₂ (0, 5)	14.36±0.07 ^a	14.33	
СО	< 12.6 ^b	12.54	
C I*	13.87±0.05 °	13.86	
C I**	13.56±0.04 ^c	13.72	
C I***	12.82±0.07 ^c	13.02	
NI	14.54±0.22 ^b	14.52	
Mg II	15.33±0.24 ^b	15.29	
Si II	15.06±0.05 ^b	15.02	
P II	12.86±0.24 ^b	12.81	
S II	14.81±0.09 ^b	14.76	
CLI	12.97±0.14 ^b	12.66	
Ar I	13.86±0.22 ^b	13.81	
Mn II	12.22±0.08 ^b	12.19	
Fe II	14.44±0.08 ^b	14.40	
UM-DAE CBS	12.81±0.04 ^b	12.82 ¹⁹	

<u>The physical conditions of the DLA at</u> $z_{abs} = 2.3377$

UM-DAE CBS

<u>Results for DLA at z = 2.4 towards SDSS</u> <u>J143912.04+111740.5</u>

		Species	Column density	Column density
Model parameter	Value	(X)	from	predicted by model
		observation	log N(X) cm ⁻²	
Hydrogen density	60 cm ⁻³		log N(X) cm ⁻²	
	HI	20.10 ^{+0.10} -0.08 ^a	20.08	
Intensity of	10 ⁻⁴ erg cm ⁻² s ⁻¹	H ₂	19.38±0.10 ^a	19.45
radiation field	(between 6 and 13.6 eV)	H ₂ (0, 0)	18.90±0.10 ^a	19.06
Cosmic ray $1.4 \times 10^{-15} \text{ s}^{-1}$ ionisation rate of H I	H ₂ (0, 1)	19.18±0.10 ^a	19.22	
	$1.4 \times 10^{-15} c^{-1}$	СО	13.89±0.02ª	13.88
	1.4 ~ 10 5	CO (0, 0)	13.27±0.03 ^a	13.28
Metallicity 0.5 ISM	CO (0, 1)	13.48±0.02 ^a	13.53	
	CO (0, 2)	13.18±0.06 ^a	13.26	
Turbulence	1.5 km/s	C I*	14.26±0.01 ^a	14.23
Grain sizo	0.5.ISM	C I**	14.02±0.02 ^a	13.99
	0.5 15141	C I***	13.10±0.02 ^a	13.21
Srianand et al. 2008;		NI	≥ 15.71 ^b	15.86
		Si II	14.80±0.04 ^b	14.84
		S II	15.27±0.06 ^b	15.30
		Fe II	14.28±0.05 ^b	14.35
Noterdaeme	et al. 2008b	Zn II	12.93±0.04 ^b	12.85

The physical conditions of the DLA at z_{abs} = 2.41837

UM-DAE CBS

Effect of grain size on predicted column densities

The ratio of model-to-observed column densities for H I, C I and H₂ for the DLA at $z_{abs} = 2.3377$. The best-fitting model is clearly the one with grains of size 0.5 times the ISM grain size.

Katherine et al. 2015

Effect of grain size on predicted column densities

The ratio of model-to-observed column densities for H I, H₂, CO and C I for the DLA at z_{abs} = 2.41837. The best-fitting model is clearly the one with grains of size 0.5 times the ISM grain size.

Katherine et al. 2015

Ratio of model-to-observed column densities of C I and H_2 for the 2 DLAs for two different models – one, with grain sizes in the range 0.0025–0.125 µm following the MRN size distribution with exponent -3.5; and two, with grain sizes in the range 0.005–0.250 µm, following a power-law distribution with exponent -4.

- We have performed detailed numerical simulation of 2 DLAs: at z_{abs} = 2.3377 towards Q 1232 + 082, at z_{abs} = 2.41837 towards SDSS J143912.04+111740.5 We have reproduced most of the observed column densities satisfactorily.
- > DLAs with H_2 have high density $(n_H > 10 \text{ cm}^{-3})$ and stars are forming there.
- The two DLAs are constant-pressure clouds with in-situ star formation.
- > We find that grains in the high-redshift DLAs that we have modelled are smaller in size than in the local ISM.

The smaller grains can be due to,

- > smaller grains distributed by the MRN size distribution
- ISM-sized grains following a power-law distribution with an index lower than the MRN distribution.
- The two scenarios produce almost identical column densities for various species and hence it is not possible to single out one of them as the more likely case.
- The cosmic ray ionization rates in the 2 systems we have modelled span a range > 1.5 dex. This clearly indicates that the ionization produced by cosmic rays is not uniform everywhere, and encourages further probing of cosmic ray ionization along various sightlines.

