
Anindita Mondal & Ramkrishna Das

Astrophysics & Cosmology Department, Satyendra Nath Bose National Centre for Basic Sciences, Kolkata, India.

<u>Novae</u>

Close binary systems where explosion occurs due to TNR on the WD which accretes matter from the companion star.

Significance of Novae :

- Used to measure distance in space, using MMRD relations.
- RNe are probable progenitor of type Ia supernovae.
- Probable source of significant isotopes, e.g. 22 Na, 26 Al.
- Form varieties of astrophysical dust (grain size $0.1 5 \mu m$) and molecules (e.g. CO, CN, PAH)

Few questions

- Formation of molecules and dust in 'unfriendly' environment.
- Photoionization process inside ejecta and evolution of spectra.
- Type of WD and progenitors of RNe.

Abundance analysis of the recurrent nova RS Oph (2006 outburst) [Das & Mondal, 2015, New Astronomy, 39, 19-24]

D31 V-band Red Giant + White Dwarf. Recurrence period ~22 y, II 0.5412 X] 0.5535 He I, WD mass ~ 1.35 M \odot . Strong candidate for progenitor of Type Ia SNe. 0.45 0.50 0.55 D31 H-band D31 J-band D31 K-band [Mn XIV] 2.0 He I 2.1120 1.1655 4.0 0.41.65 1.75 2.12.2 1.10 1.15 1.20 1.25 1.30 1.35 N/N_o 12,0(2) 12.0 ± 1.0 Best-fit CLOUDY model parameters, 0/0 1.0(1) 1.0 ± 0.4 1.0(1)Parameters D31 D49 Predicted Ne/Ne₆ 1.5(1) 1.5 ± 0.1 a bund ances Si/Si_@ 0.3(1)0.5(1) 0.4 ± 0.1 T₈₈ (×10⁵ K) Fe/Fe, 3.2 ± 0.2 5.5 3.5 (11) 5.8 3.0 (12) Source luminosity (×10³⁶ erg s⁻¹) 8.0 6.3 Ar/Ar_@ 4.9(1)5.2 (2) 5.1 ± 0.1 Clump hydrogen density (×10⁸ cm⁻³) 10.0 6.3 al/al 1.1(1) 1.0 ± 0.1 0.9(1)Diffuse hydrogen density (×108 cm⁻³ 1.6 1.0 Ejected mass (×10⁻⁶ M_☉) 4.9 3.4 -3 -3 Number of observed lines (n) 42 51 Inner radius (×10¹⁴ cm) 2.8 2.1 Number of free parameters (n_n) 11 13 Outer radius (×1014 cm) 6.8 4.8 38 Degrees of freedom (v) 31 Clump to diffuse covering factor 85/15 90/10Total χ^2 38.0 69.1 Filling factor 0.1 0.1 1.2 1.8 χ^2_{md} 0.0 0.0 1.8 (11) 1.9 (16) 1.8 ± 0.1 He/He at

The model could not produce a few lines e.g. Si II (0.5041, 0,5056 μ m), O I (1.1287, 1.1364 μ m), [Mn IV] (2.0894 μ m)

Future plan: In-depth analysis of remaining spectra using Cloudy.

(Cloudy Workshop, IUCAA, Sep. 21 – 26, 2015)